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LOGIT REGRESSION

« Should be used if the dependent variable (Y)
is a nominal scale

* Here it is assumed that Y has the values 0 or 1

* The model of the conditional probability of Y, E[Y
| X], is based on the logistic function
(E[Y | X] is read “the expected value of Y given
the value of X")

* But

Why cannot E[Y | X] be a linear function also in
this case?
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The linear probability model: LPM

* The linear probability model
(LPM) of Y, when Y, can take only
two values (0, 1) assumes that
we can interpret E[Y, | X] as a
probability

* E[Y; | X] = by + & b; x; = PrY; =1]

 This leads to severe problems:
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Are the assumptions of a linear regression
model satisfied for the LPM?

 One assumptions of the LPM is that the
residual, e, satisfies the requirements of OLS

» The the residual must be either

» This means that there is heteroscedasticity (the
residual varies with the size of the values on the
x-variables)

« There are estimation methods that can get
around this problem (such as 2-stage weighted
least squares method)

* One example of LPM:
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OLS regression of a binary dependent variable on
the independent variable "years lived in town”

ANOVA tabell Sum of Mean

Squares df Square F Sig.

Regression 3,111 1 3,111| 13,648 | ,000(a)

Residual 34,418 151 ,228

Total 37,529 152

Dependent Variable: Std.

SCHOOLS SHOULD CLOSE B Error t Sig.

(Constant) ,594 ,069 | 10,147 | ,000

YEARS LIVED IN TOWN -,008 002| -3,694| ,000

The regression looks OK in these tables
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Fall 2009

© Erling Berge 2009 7

Conclusion: LPM model is wrong

* The example shows that for reasonable values
of the x variable we can get values of the
predicted y where

E[Y,| X]>1 or E[Y; | X] <0,
 For this there is no remedy
 LPM is for substantial reasons a wrong model

* We need a model where we always will have

0 < E[Y;| X]

<1

» The logistic function can provide such a model
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The logistic function

The general logistic function is written

* Yi = a/(1+y*exp[-BX]) + ¢

o>0 provides an upper limit for Y

this means that 0<Y< a

v determines the horizontal point for rapid growth
If we determines that o =1 and y = 1

One will always find that

. 0 < 1/(1+exp[-BX]) < 1

The logistic function will for all values

of x lie between 0 and 1
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Logistic curves for different 3
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B determines how rapidly the curve grows
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MODEL (1)

Definitions:
* The probability that person no i shall have the

value 1 on the variable Y will be written Pr(Y; =1).

Then Pr(Y, # 1) =1 - Pr(Y;=1)
* The odds that person no i shall have the value 1

on the variable Y, here called O, is the ratio
between two probabilities

Pr(y =1 .
Ol(ylzl)zl P(yl ) = pl
- r(Yi :1) 1- o;
MODEL (2)
Definitions:

* The LOGIT, L, is the natural logarithm of
the odds, O, , for person no i:

L, = In(O))

» The model assumes that L, is a linear
function of the explanatory variables x;

. i.e.:

cLi=Bg+ Zj Bj X;; , where j=1,..,K-1, and i=1,..,n
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MODEL (3)

* Let X = (the collection of all x; ), then the
probability of Y; = 1 for person no i

1 _exp(l)
1+exp(-L) L1+exp(L)

Priy, =D =E[y;| X]=

K-1
where L, =B, + > B, X
-1

The graph of this relationship is useful for the
interpretation what a change in x means
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MODEL (4)

In the model Y; = E[Y; | X] + g, the error is either

« g =1-E[Y,| X] with probability E[Y; | X]
(since Pr(Y;=1) = E[Y; | X] ),

or the error is

+ g =- E[Y,; | X] with probability 1 - E[Y, | X]

* Meaning that the error has a distribution

known as the binomial distribution with
p; = E[Y; | X]
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Estimation

* The method used to estimate the parameters in
the model is Maximum Likelihood

* The ML-method gives us the parameters that
maximize the Likelihood of finding just the
observations we have got

e This likelihood we call L

» The criterion for choosing regression parameters
is that the likelihood becomes as large as
possible
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Maximum Likelihood (1)

» The Likelihood equals the product of
the probability of each observation.
For a dichotomous variable where
Pr(Y; = 1)=P, this can be written

L =TT, (R @-R)""}
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Maximum Likelihood (2)

* |t is easier to maximize the likelihood L

if one uses the natural logarithm of L :

In(L)=3{y INR+1-y,)In(2-R)}

n
=1

» The natural logarithm of L is called the
LogLikelihood, It may be called LL.

® /[ has a central role in logistic regression.
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Logistic model instead of LPM

-2 Log Likelihood Coefficients
Iteration Constant Lived in town
Step 0 209,212 -,275 0
1 195,684 ,376 -,034
2 195,269 ,455 -,041
3 195,267 ,460 -,041
4 195,267 ,460 -,041
Dependent:
Schools should close B S.E.| Wald |df| Sig. | Exp(B)
Lived in town -,041|,012| 11,399| 1| ,001 ,960
Constant ,460| ,263| 3,069| 1| ,080| 1,584
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Footnotes to the table

» Step 0: Point of departure is a model with

a constant and no variables

* |terative estimation

— Estimation ends at iteration no 4 since the
parameter estimates changed less than 0.001

* The Wald statistic that SPSS provides
equals the square of the “t” that Hamilton

(and STATA) provides (Wald = t?)
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Fig 7.4
Hamilton

The linear model
is entered
beside the
logistic
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TESTING

Two tests are useful

* (1) The Likelihood ratio test

—This can be used analogous to the F-
test

* (2) Wald test

—The square root of this can be used
analogous to the t-test
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Interpretation (1)

» The difference between the linear model and
the logistic is large in the neighbourhood of 0
and 1

« LPM is easy to interpret: Y, = 3, when x,=0,
and when x,; increases with one unit Y,
increases with 3, units

» The logistic model is more difficult to
interpret. It is non-linear both in relation to
the odds and the probability
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ODDS and ODDS RATIOS

» The Logit, L, ( L= po + X B xii ) is defined as
the natural logarithm of the odds

This means that

* odds =0O,(Y=1) = exp(L,) = eb

and

« Odds ratio= Oi (Y;=1| L")/ O, (Y=1] L)
—where L’ and L. have different values on only

one variable x ;.
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Interpretation (2)

« When all x equals 0 then L; = B, This means that
the odds for y, = 1 in this case is exp{B}

« If all x-variables are kept fixed (they sum up to a
constant) while x, increases with 1, the odds for
y, = 1 will be multiplied by exp{B}

« This means that it will change with
100(exp{B} — 1) %

» The probability Pr{y, = 1} will change with a
factor affect by all elements in the logit
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Logistic regression: assumptions

» The model is correctly specified

» The logit is linear in its parameteres
» All relevant variables is included
* No irrelevant variables are included

x-variables are measured without error
Observations are independent

No perfect multicollinearity

No perfect discrimination

Sufficiently large sample
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Assumptions that cannot be tested

» Model specification
 All relevant variables are included

» x-variables are measured without error
* Observations are independent

Two will be tested automatically.

If the model can be estimated there is

» No perfect multicollinearity and

» No perfect discrimination
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LOGISTIC REGRESSION
Statistical problems may be due to

* Too small a sample

* High degree of multicollinearity

— Leading to large standard errors (imprecise
estimates)

— M is discovered and treated in the same way as in
OLS regression
» High degree of discrimination (or separation)

— Leading to large standard errors (imprecise
estimates)

— Will be discovered automatically by SPSS
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Discrimination/ separation

* Problems with discrimination appear when we
for a given x-value get almost perfect prediction
of the y-value (nearly all with a given x-value
have the same y-value)

* In SPSS it may produce the following message:

Warnings

* There is possibly a quasi-complete separation in the
data. Either the maximum likelihood estimates do not
exist or some parameter estimates are infinite.

+ The NOMREG procedure continues despite the above
warning(s). Subsequent results shown are based on the
last iteration. Validity of the model fit is uncertain.
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Discrimination in Hamilton table 7.5

Odds for weaker
requirements is 44/202 =
0,218 among women
without small children

Odds for weaker
requirement is 0/79 =0
among women with small
children

Odds rate is 0/0,218 =0
hence exp{b,omant=0

This means that b, ., =
minus infinity
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No 202 79
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ments

Weaker |44 0
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Logistic regression

* |f the assumptions are satisfied logistic
regression will provide normally
distributed, unbiased and efficient (minimal
variance) estimates of the parameters
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