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LOGIT REGRESSION

• Should be used if the dependent variable (Y) 
is a nominal scale

• Here it is assumed that Y has the values 0 or 1
• The model of the conditional probability of Y, E[Y 

| X], is based on the logistic function 
(E[Y | X] is read “the expected value of Y given 
the value of X”)

• But
Why cannot E[Y | X] be a linear function also in 
this case?
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The linear probability model: LPM

• The linear probability model 
(LPM) of Yi when Yi can take only 
two values (0, 1) assumes that 
we can interpret E[Yi | X] as a 
probability

• E[Yi | X] = b0 + j bj xji = Pr[Yi =1] 

• This leads to severe problems:
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Are the assumptions of a linear regression 
model satisfied for the LPM?

• One assumptions of the LPM is that  the 
residual, ei satisfies the requirements of OLS

• The the residual must be either 
– ei = 1 – (b0 + j bj xji) or 
– ei = 0 – (b0 + j bj xji) 

• This means that there is heteroscedasticity (the 
residual varies with the size of the values on the 
x-variables)

• There are estimation methods that can get 
around this problem (such as 2-stage weighted 
least squares method)

• One example of LPM:
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OLS regression of a binary dependent variable on 
the independent variable ”years lived in town”

,000-3,694,002-,008YEARS LIVED IN TOWN

,00010,147,059,594(Constant)

Sig.t
Std. 
ErrorB

Dependent Variable: 
SCHOOLS SHOULD CLOSE

15237,529Total

,22815134,418Residual

,000(a)13,6483,11113,111Regression

Sig.F
Mean

Squaredf
Sum of

Squares
ANOVA tabell

The regression looks OK in these tables
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Here the predicted y is 
below 0 for reasonable 
values of x

Scatter plot with line of regression. Figure 7.1 Hamilton
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Conclusion: LPM model is wrong 

• The example shows that for reasonable values 
of the x variable we can get values of the 
predicted y where

E[Yi | X] >1 or E[Yi | X] < 0, 

• For this there is no remedy

• LPM is for substantial reasons a wrong model

• We need a model where we always will have 

0 ≤ E[Yi | X] ≤ 1 

• The logistic function can provide such a model
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The logistic function
The general logistic function is written
• Yi = /(1+*exp[-Xi]) + i

 provides an upper limit for Y 
this means that 0<Y< 
 determines the horizontal point for rapid growth 
If we determines that  = 1 and  = 1 
One will always find that
• 0 < 1/(1+exp[-Xi]) < 1
The logistic function will for all values 
of x lie between 0 and 1 
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Logistic curves for different 
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1+exp(-0.5x)

y= 1
1+exp(-0.25x)

y= 1
1+exp(-0.1x)

Horizontal line through ( )0, 1

 determines how rapidly the curve grows 
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MODEL (1)

Definitions:
• The probability that person no i shall have the 

value 1 on the variable Y will be written Pr(Yi =1). 
Then Pr(Yi ≠ 1) = 1 - Pr(Yi=1) 

• The odds that person no i shall have the value 1 
on the variable Y, here called Oi, is the ratio 
between two probabilities 

   
 

Pr 1
1

1 Pr 1 1
i i

i i
i i

y p
y

y p


  

  
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MODEL (2)

Definitions:

• The LOGIT, Li , is the natural logarithm of 
the odds, Oi , for person no i:

Li = ln(Oi)

• The model assumes that Li is a linear 
function of the explanatory variables xj , 

• i.e.:

• Li = 0 + j j xji , where j=1,..,K-1, and  i=1,..,n 
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MODEL (3)

• Let X = (the collection of all xj ), then the 
probability of Yi = 1 for person no i 

   
1

0
1

exp( )1
Pr( 1) X

1 exp 1 exp( )

where 

i
i i

i i

K

i j ji
j

L
y E y

L L

L X




   
  

   

|

The graph of this relationship is useful for the 
interpretation what a change in x means
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MODEL (4)

In the model Yi = E[Yi | X] + i the error is either
• i = 1 - E[Yi | X] with probability E[Yi | X] 

(since Pr(Yi = 1) = E[Yi | X] ), 

or the error is
• i = - E[Yi | X] with probability 1 - E[Yi | X]

• Meaning that the error has a distribution 
known as the binomial distribution with 
pi = E[Yi | X] 
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Estimation

• The method used to estimate the parameters in 
the model is Maximum Likelihood

• The ML-method gives us the parameters that 
maximize the Likelihood of finding just the 
observations we have got

• This likelihood we call L
• The criterion for choosing regression parameters 

is that the likelihood becomes as large as 
possible
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Maximum Likelihood (1)

• The Likelihood equals the product of 
the probability of each observation. 
For a dichotomous variable where 
Pr(Yi = 1)=Pi this can be written

   1

1
1 ii

n YY
i ii

P P



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Maximum Likelihood (2)
• It is easier to maximize the likelihood L

if one uses the natural logarithm of L :

      
1

ln ln 1 ln 1
n

i i i i
i

y P y P


   L

• The natural logarithm of L is called the 

LogLikelihood, It may be called LL. 

•LL has a central role in logistic regression. 
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Logistic model instead of LPM

-,041,460195,2674

-,041,460195,2673

-,041,455195,2692

-,034,376195,6841

0-,275209,212Step 0

Lived in townConstant

Coefficients-2 Log Likelihood

Iteration

1,584,08013,069,263,460Constant

,960,001111,399,012-,041Lived in town

Exp(B)Sig.dfWaldS.E.B
Dependent: 
Schools should close
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Footnotes to the table

• Step 0: Point of departure is a model with 
a constant and no variables

• Iterative estimation
– Estimation ends at iteration no 4 since the 

parameter estimates changed less than 0.001

• The Wald statistic that SPSS provides 
equals the square of the “t” that Hamilton 
(and STATA) provides (Wald = t2)
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Fig 7.4 
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TESTING

Two tests are useful

• (1) The Likelihood ratio test 
– This can be used analogous to the F-

test

• (2) Wald test  
– The square root of this can be used 

analogous to the t-test
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Interpretation (1)

• The difference between the linear model and 
the logistic is large in the neighbourhood of 0 
and 1 

• LPM is easy to interpret: Yi = 0 when x1i=0, 
and when x1i increases with one unit Yi
increases with 1 units

• The logistic model is more difficult to 
interpret. It is non-linear both in relation to 
the odds and the probability
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ODDS and ODDS RATIOS

• The Logit, Li, ( Li= 0 + j j xji ) is defined as 
the natural logarithm of the odds 

This means that

• odds  = Oi (Yi=1) = exp(Li) = eLi

and

• Odds ratio= Oi (Yi=1| Li’) / Oi (Yi=1| Li)

– where Li’ and Li have different values on only 
one variable x.j.
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Interpretation (2)
• When all x equals 0 then Li = 0 This means that 

the odds for yi = 1 in this case is exp{0}

• If all x-variables are kept fixed (they sum up to a 
constant) while x1 increases with 1, the odds for 
yi = 1 will be multiplied by exp{1} 

• This means that it will change with 

100(exp{1} – 1) %

• The probability Pr{yi = 1} will change with a 
factor affect by all elements in the logit
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Logistic regression: assumptions

• The model is correctly specified
• The logit is linear in its parameteres

• All relevant variables is included

• No irrelevant variables are included

• x-variables are measured without error 

• Observations are independent

• No perfect multicollinearity

• No perfect discrimination

• Sufficiently large sample
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Assumptions that cannot be tested

• Model specification
• All relevant variables are included

• x-variables are measured without error 

• Observations are independent

Two will be tested automatically. 

If the model can be estimated there is

• No perfect multicollinearity and

• No perfect discrimination 
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample

• High degree of multicollinearity
– Leading to large standard errors (imprecise 

estimates)

– M is discovered and treated in the same way as in 
OLS regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise 

estimates)

– Will be discovered automatically by SPSS
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Discrimination/ separation
• Problems with discrimination appear when we 

for a given x-value get almost perfect prediction 
of the y-value (nearly all with a given x-value 
have the same y-value)

• In SPSS it may produce the following message:

• The NOMREG procedure continues despite the above 
warning(s). Subsequent results shown are based on the 
last iteration. Validity of the model fit is uncertain.

• There is possibly a quasi-complete separation in the 
data. Either the maximum likelihood estimates do not 
exist or some parameter estimates are infinite.

Warnings
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Discrimination in Hamilton table 7.5

• Odds for weaker 
requirements is 44/202 = 
0,218 among women 
without small children 

• Odds for weaker 
requirement is 0/79 = 0 
among women with small 
children 

• Odds rate is 0/0,218 = 0 
hence exp{bwoman}=0 

• This means that bwoman = 
minus infinity 

044Weaker 
require
ments 
OK

79202No 
weaker 
require
ments

Women 
with 
small 
children

Women 
without 
small 
children
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Logistic regression

• If the assumptions are satisfied logistic 
regression will provide normally 
distributed, unbiased and efficient (minimal 
variance) estimates of the parameters


